MINIREVIEW

Glycosyltransferases and their products: cryptococcal variations on fungal themes

James Stacey Klutts1,2, Aki Yoneda1, Morgann C. Reilly1, Indrani Bose1 & Tamara L. Doering1

1Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA and 2Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA

Correspondence: Tamara L. Doering,
Department of Molecular Microbiology and Washington University School of Medicine,
660 S. Euclid, St Louis, MO 63110-1093, USA.
Tel.: +1 314 747 5597; fax: +1 314 362 1232; e-mail: doering@wustl.edu

Received 20 October 2005; accepted 9 November 2005.
First published online 21 March 2006.
doi:10.1111/j.1567-1364.2006.00054.x

Editor: Stuart Levitz

Keywords
glycosyltransferase; glycosylation; glycan; polysaccharide; fungi; Cryptococcus.

Abstract
Glycosyltransferases are specific enzymes that catalyse the transfer of monosaccharide moieties to biological substrates, including proteins, lipids and carbohydrates. These enzymes are present from prokaryotes to humans, and their glycoconjugate products are often vital for survival of the organism. Many glycosyltransferases found in fungal pathogens such as Cryptococcus neoformans do not exist in mammalian systems, making them attractive potential targets for selectively toxic agents. In this article, we present the features of this diverse class of enzymes, and review the fungal glycosyltransferases that are involved in synthesis of the cell wall, the cryptococcal capsule, glycoproteins and glycolipids. We specifically focus on enzymes that have been identified or studied in C. neoformans, and we consider future directions for research on glycosyltransferases in the context of this opportunistic pathogen.

Introduction
Glycoconjugates are fundamental building blocks of organisms, contributing to the structure, integrity, and function of prokaryotic and eukaryotic cells. Individual sugars may be linked to proteins, lipids or other carbohydrates, and the resulting structures are found in every cellular compartment. Biological glycans are tremendously diverse, ranging from a single sugar moiety to the elaborate and extensive capsule polysaccharides of Cryptococcus neoformans. The common feature of all glycoconjugates, however, is that they are created by the co-ordinated activities of glycosyltransferase enzymes. In this article, we review current knowledge of cryptococcal glycosyltransferases, in the context of our understanding of fungal polysaccharide synthesis.

Fungi are richly endowed with polysaccharide structures. Their proteins may be extensively glycosylated, bearing hundreds of sugar residues, and their glycolipids are also quite complex. Fungal cell walls are composed primarily of carbohydrate polymers such as glucan and chitin, as detailed below. These structures are the primary mediators of cell integrity and interactions with the extracellular environment. Cryptococcus neoformans, the focus of this Special Issue, takes glycan synthesis a level further, by surrounding its cell wall with an intricate polysaccharide capsule that is crucial for virulence.

Cryptococcus neoformans is an important human pathogen, predominantly in the setting of immune compromise. Unfortunately, the antifungal compounds currently available for the treatment of cryptococcosis are associated with host toxicity and are rarely able to clear the infection completely. It is therefore critical to consider potential targets for chemotherapy, either unique to this pathogen or shared by other fungi, that may enable the development of selectively toxic compounds. In the category of unique features, C. neoformans offers capsule biosynthesis, a process shared only by a group of related fungal species that are not pathogenic. Based on the exquisite specificity of glycosyltransferases, at least 12 of these enzymes should be required to build the capsule components (see Fig. 1), and these are not likely to resemble host proteins. Additional synthetic processes common to C. neoformans and other fungal pathogens, but not to their mammalian hosts, include cell wall construction and aspects of protein glycosylation. Excitingly, studies of glycosyltransferases involved in cell wall synthesis have already yielded successful antifungal compounds (see ‘β(1,3)-Glucan synthases (FKS)’). Below we review the general characteristics of glycosyltransferases, discuss the role of these enzymes in fungal glycoconjugate synthesis and consider directions for future research.
Properties and characteristics of glycosyltransferases

Glycosyltransferases catalyse the specific transfer of a monosaccharide moiety from an activated sugar donor to a distinct acceptor molecule in a particular linkage. Common sugar donors include nucleotide monophosphosugars, nucleotide diphosphosugars and dolichol-linked sugars (Fig. 2a). As will be discussed below, both saccharides as well as nonsaccharides, such as proteins and lipids, can serve as acceptor molecules. In eukaryotes, the reactions catalysed by glycosyltransferases often take place within the endoplasmic reticulum (ER) – Golgi pathway. Resident glycosyltransferases of these organelles exist as type II membrane proteins with a short N-terminal cytoplasmic domain, a membrane-spanning domain, a stem region and a globular C-terminal luminal domain.

The transfer of a glycosyl moiety from one molecule to another can occur via either an inverting or retaining mechanism. In inverting glycosyltransferases, the deprotonated hydroxyl group of the acceptor attacks the C1 anomeric carbon of the sugar donor to form a glycosic bond, resulting in an inversion of the configuration at C1 (Qasba et al., 2005). The mechanism of retaining glycosyltransferases, in which a glycosic bond is formed between the donor and acceptor while retaining the C1 configuration, is less clear. Glycosyltransferases typically require metal ion cofactors. Binding of the cofactor and/or the sugar donor molecule results in a conformational change in the protein. A number of these enzymes contain one or more flexible loop regions that re-order upon binding of the sugar donor to generate the acceptor-binding site. Once the glycosyl unit has transferred from the donor to the acceptor molecule, the saccharide product is released and the loop reverts to its native conformation, releasing any remaining moieties of the donor molecule (Qasba et al., 2005).

Traditionally, glycosyltransferases were classified on the basis of their donor, acceptor and product specificity, and identified by an Enzyme Commission (EC) number (Coutinho et al., 2003). With the availability of thousands of putative glycosyltransferase sequences from genome studies, a new classification scheme for these enzymes was proposed that did not require knowledge of biochemical function. Instead, these enzymes are divided into families based on similarities in amino acid sequence to one or more founding members that have been biochemically characterized (Campbell et al., 1997). A database of enzymes involved in carbohydrate metabolism (CAZY, Carbohydrate Active ZYmes) organized according to this classification scheme is maintained by the Glycobiochemistry unit at AFMB-CNRS in Marseille, France, and can be found on the internet at http://afmb.cnrs-mrs.fr/CAZY. As of October 2005, the CAZY database contained 78 glycosyltransferase families that included 64 confirmed and putative enzymes from the C. neoformans var. neoformans JEC21 genome project.

The primary amino acid sequences of glycosyltransferases are typically very diverse, although the predicted proteins exhibit overall structural similarities. All glycosyltransferases contain distinct donor and acceptor binding domains connected by a linker region that forms the active site. On the basis of broader structural patterns, glycosyltransferases have been primarily divided into two superfamilies, GT-A and GT-B (Fig. 2b). The GT-A enzymes have two dissimilar domains: an N-terminal sugar donor-binding domain composed of several β-strands that are each flanked by α-helices to form a Rossmann-like fold, and a C-terminal acceptor binding domain made up largely of mixed β-sheets (Qasba et al., 2005). Members of the GT-A family frequently have a three-residue DXD, EXD or equivalent motif that is involved in the binding of a metal ion (often Mg$^{2+}$ or Mn$^{2+}$), although not all GT-A enzymes require such a cofactor and some lack this motif. Enzymes of the GT-B superfamily typically have two Rossmann-like folds that allow the acceptor molecule to bind at the N-terminus while the C-terminal domain is involved in binding the sugar donor (Qasba et al., 2005). Although some GT-B enzymes utilize metal ion cofactors, most do not and thus GT-Bs lack a D × D motif or its equivalent, further distinguishing them from GT-A molecules. Members of the GT-B superfamily do, however,
exhibit a pattern of proline and glycine residues located within the donor-binding domain (Hu & Walker, 2002). In addition to the defined GT-A and GT-B superfamilies, there are a growing number of glycosyltransferases that do not fall into either of these categories on the basis of structural motifs or amino acid sequence (Kikuchi et al., 2003; Liu & Mushegian, 2003; Breton et al., 2005). Although a number of authors have suggested the creation of additional glycosyltransferase superfamilies to accommodate these outliers, a consensus within the field has not yet been reached.

The formation of glycoconjugates often requires several glycosyltransferases working sequentially to generate the desired linear or branched structures. These glycosyltransferases may form large protein complexes, as with the Saccharomyces cerevisiae M-Pol II enzyme complex discussed below (see ‘N-linked glycan synthesis’). Functional redundancy of glycosyltransferases is also typical, as demonstrated by the S. cerevisiae Pmt and Mnt families of mannosyltransferases that act in the O-linked glycosylation of proteins (see ‘O-linked glycan synthesis’).

Review of fungal glycosyltransferases

Glycosyltransferases play vital roles in the biosynthesis of numerous molecules within fungi, and many glycosyltransferases are unique to these organisms, suggesting them as

Fig. 2. Structures of monosaccharide donors and glycosyltransferases. (a) Examples of common sugar donor molecules. (b) Modeled three-dimensional structures typical of the GT-A and GT-B superfamilies. [Fig. 2b reprinted from Coutinho et al. (2003) with permission from Elsevier.]
Table 1. Major cell wall components of selected fungal organisms*1

<table>
<thead>
<tr>
<th></th>
<th>β-Glucan</th>
<th>α-Glucan</th>
<th>Mannoproteins</th>
<th>Chitin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptococcus neoformans</td>
<td>15% 1 mostly β-1,6 some β-1,3</td>
<td>35% 1 mostly α-1,3 some α-1,4</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>50% 6 β-1,3; 10% 6 β-1,6</td>
<td>None</td>
<td>40% 6</td>
<td>1–3% 6</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>40% 6 β-1,3; 20% 6 β-1,6</td>
<td>None</td>
<td>35–40% 6</td>
<td>1–2% 6</td>
</tr>
<tr>
<td>Schizosaccharomyces pombe</td>
<td>55% 6 β-1,3; 6% 6 β-1,6</td>
<td>28% 6 α-1,3</td>
<td>Likely present</td>
<td>0.5% 6</td>
</tr>
<tr>
<td>Aspergillus fumigatus (mycelial form)</td>
<td>70% 1 β-1,3; 4% 1 β-1,6; 10% 1 β-1,3/1,4</td>
<td>Present</td>
<td>3.5% 6</td>
<td>Present</td>
</tr>
<tr>
<td>Paracoccidioides brasiliensis</td>
<td>Yeast form: 5% 1 β-1,3 Mycelial form: Mostly β-1,3</td>
<td>Yeast form: 95% 1 α-1,3 Mycelial form: Little α-1,3</td>
<td>Likely present</td>
<td>Present (yeast and mycelial)</td>
</tr>
<tr>
<td>Blastomyces dermatitidis (yeast form)</td>
<td>5% 1</td>
<td>95% 1</td>
<td>Likely present</td>
<td>Present</td>
</tr>
<tr>
<td>Histoplasma capsulatum (yeast form)</td>
<td>Present</td>
<td>Present</td>
<td>Likely present</td>
<td>Likely present</td>
</tr>
</tbody>
</table>

*The ratio of cell wall components is highly dependent on whether the organism is in hyphal or yeast form, so these are listed separately. Equivalent analyses have not been performed for all organisms listed.
1Reprinted from Bose et al. (2003) with permission from ASM Press. Please refer to that article for a complete list of source publications for the data in this table.
2Percentage of cell wall glucan.
3Percentage of total cell wall mass.

attractive targets for antifungal therapy. Below we review many of the known fungal glycosyltransferases, organized by their biosynthetic role, with particular attention to what is known in Cryptococcus.

Glycosyltransferases involved in fungal cell wall synthesis

The cell wall is a vital structure for all fungi, lending the cell its shape and protecting the organism from the environment. This structure is composed of a number of unique interconnected polysaccharides, including chitin and a variety of glucans (see Table 1), that are not found in mammalian cells. However, as also shown in Table 1, the composition of the cell wall can differ substantially among fungal species. In addition, although the fungal cell wall is a rigid structure, it must be dynamic in order to allow for budding, growth and adaptation to environmental stress. As a result, the processes of cell wall construction and remodeling are quite complex and are poorly understood. Further evidence of cell wall importance and complexity is shown by the estimate that ~20% of all genes in S. cerevisiae are involved in its production (Duran & Nombela, 2004). Below we review our current knowledge of the glycosyltransferases involved in the synthesis of the cell walls of fungi.

β(1,3)-Glucan synthases (FKS)

β(1,3)-Glucan is a major structural component of the cell wall in all fungi except the zygomycetes. In S. cerevisiae, this moderately branched polysaccharide makes up about 50% of the dry weight of the wall, although this percentage is significantly lower in C. neoformans (Table 1) (Klis et al., 2002; Bose et al., 2003). A membrane-associated β-glucan synthase activity was described in the late 1970s that processively built a polysaccharide of 60–80 glucose residues, using UDP-glucose as substrate (Douglas, 2001). It was subsequently shown that two distinct GTP-regulated β-glucan synthase complexes could catalyse this activity. These two complexes differ only in the presence of either the Fks1 or Fks2 homologous protein subunits. In S. cerevisiae, these two subunits are differentially expressed, with FKS1 being expressed during growth in the presence of high glucose and FKS2 when glucose is limiting. Yeast strains with a disruption of either FKS1 or FKS2 are viable, but disruption of both genes is lethal. It has been hypothesized that the Fks1/2 proteins are the catalytic subunits of the β(1,3)-glucan synthase complex. However, purification of either Fks1p or Fks2p has proven difficult and failed to confirm that the Fks proteins have β(1,3)-glucan synthase activity (Douglas, 2001). Bussey and colleagues recently showed that disruption of FKS1 led to a decrease in both β(1,3)- and β(1,6)-glucans in S. cerevisiae and suggested that the Fks proteins were involved with transporting glucans, rather than in their synthesis (Dijkgraaf et al., 2002). Sequences homologous to the yeast Fks proteins have been found in many fungi. Although multiple homologs are found in Schizosaccharomyces pombe and other fungi, the human pathogens C. neoformans, Aspergillus fumigatus and Candida albicans each have only a single copy. Attempts to disrupt the Fks homolog in each of the latter organisms have not yielded viable transformants (Thompson et al., 1999; Douglas, 2001), suggesting they are essential.

The echinocandins are effective antifungal compounds that have been shown to inhibit the β-glucan synthase complex in many fungi. Surprisingly, C. neoformans is
relatively resistant to the echinocandins, even though its β-glucan synthase can be inhibited in vitro by these drugs (Maliege & Selitrennikoff, 2005). This suggests that the echinocandins cannot reach their target in vivo, or that the organism has a way to compensate for their effect. Although the exact mechanism of resistance has not been fully elucidated, Heitman’s group showed that in the presence of the echinocandin caspofungin, C. neoformans up-regulates expression of FKS1 through the ‘cell wall integrity MAP kinase’ or Mpk1p (Kraus et al., 2003). This suggests that a unique compensation mechanism could at least partially explain resistance. Finally, the C. neoformans β-glucan synthase appears to be unique with respect to its regulation, in that perturbation of the GTP-bound regulatory subunit, Rho1p, leads to different phenotypes than observed in other fungi (Douglas, 2001). Together with the echinocandin resistance data, this suggests unique aspects of β(1,3)-glucan synthesis in C. neoformans that remain to be explored.

A second enzyme involved in β(1,3)-glucan synthesis is not a true glycosyltransferase, but rather a transglycosidase. This enzyme (Gas1p in S. cerevisiae, Phr1-2p in Ca. albicans and Gel1p in A. fumigatus) catalyses the internal cleavage of β(1,3)-glucan polymers and the transfer of the new reducing end to the nonreducing end of another β(1,3)-glucan polymer (Mouyna et al., 2000; Carotti et al., 2004). It is believed that this transglycosidase is important for cell wall cross-linking. Cryptococcus neoformans has a homolog to this enzyme which is discussed below (see ‘Glycosylphosphatidylinositol (GPI) anchor synthesis’).

α(1,3)-Glucan synthases (AGS)

The cell wall of C. neoformans contains abundant α(1,3)-glucan. Although this polysaccharide is a constituent of the cell wall of several fungi, it is absent in Saccharomyces and Candida (Table 1). The first identified α(1,3)-glucan synthase, Ags1p, is a large (266-kDa) multi-domain plasma membrane protein from S. pombe. The speculative model for its function suggests that an intracellular synthase domain first makes α(1,3)-glucan. This product is then transported across the multiple membrane spanning regions of the protein and subsequently linked to the cell wall via an extracellular transglycosylase domain (Hochstenbach et al., 1998). AGS1 (also called MOK1) is the main member of a five-gene family in Sch. pombe thought to be responsible for α(1,3)-glucan synthesis, and two independent studies suggest it is essential in this organism (Hochstenbach et al., 1998; Katayama et al., 1999). Aspergillus fumigatus has three homologs to the Sch. pombe Ags1p, two of which (AfAgs1p and AfAgs2p) have been studied. Unlike the Sch. pombe Ags1p, neither of the A. fumigatus homologs appears to be essential. Disruption of one of them (AfAgs1p) reduced cell wall α(1,3)-glucan by 50%, but did not affect virulence of A. fumigatus in mice (Beauvais et al., 2005). In C. neoformans, there is only one AGS homolog. RNA interference targeting this sequence or deletion of the gene leads to a loss of cell wall α(1,3)-glucan, a temperature-sensitive growth defect, and a lack of virulence in mice (Reese & Doering, 2003; A. J. Reese and T. L. Doering, unpublished results). Interestingly, this mutant produces capsule polysaccharides that can be detected in the culture medium and bind to acapsular mutants, but this strain is acapsular and cannot bind capsule material from any source to its outer surface (Reese & Doering, 2003). This implicates cryptococcal α(1,3)-glucan in the attachment of capsule to the cell, although the exact nature of this linkage is still under investigation.

β(1,6)-Glucan synthases

β(1,6)-Glucan is a critical molecule in S. cerevisiae, as it serves as the attachment site for mannosylated cell wall proteins and thus interconnects the outer protein and inner glucan layers of the wall. Although various studies have elucidated the structure of the β(1,6)-glucan and identified a number of genes apparently involved in its synthesis, the enzymes that build this polysaccharide remain elusive (Shahinian & Bussey, 2000). As β(1,6)-glucan is such a vital structure for many fungi and is the most abundant β-glucan in C. neoformans (Table 1), this is a very attractive area for future investigation.

Chitin synthases (CHS)

Chitin is a polymer of β(1,4)-linked N-acetylglucosamine (GlcNAc). This polysaccharide plays a role in a number of cellular processes, including septation, budding and apical growth, and is indispensable in many fungal species (Munro & Gow, 2001). The amount of cell wall chitin varies from 1–2% of the cell wall dry weight in S. cerevisiae to > 40% in some Mucor species (Munro & Gow, 2001). Because of its importance and diversity of function, fungi have evolved multiple synthases responsible for the construction of chitin. Although all of these chitin synthases (Chs) catalyse the same biochemical activity (i.e. addition of GlcNAc to the growing polysaccharide chain), in many fungi they perform distinct cellular functions (Munro & Gow, 2001). However, the disruption of some CHS genes leads to no apparent phenotype. It is currently unclear whether this lack of apparent phenotype is due to functional overlap of some of these enzymes or to the inability to identify subtle defects in cellular chitin.

The chitin synthases can be assigned to one of six classes based on amino acid sequence. Unfortunately, the functional significance of the six classes is not well understood, as the disruption of enzymes from the same class in different organisms often leads to dissimilar phenotypes (Munro &
Gow, 2001). Furthermore, there is no obvious relationship between the in vitro activity of chitin synthases and their importance to cell viability. It is thus difficult to draw conclusions about chitin synthetic processes in any specific fungal species by analysis of sequence or in vitro activities alone. In C. neoformans, eight chitin synthases have been identified by sequence homology. Each of these genes has been successfully disrupted, and none appears to be essential. One interesting CHS mutant (chs3) is temperature sensitive and has no chitosan in the cell wall (Banks et al., 2005). Chitosan, a deacetylated form of chitin, is a more flexible and soluble polysaccharide of repeating glucosamine units. The existence of chitosan has not been fully investigated in most fungi and its biological role is not understood, but it is found in substantial concentrations in the cell wall of C. neoformans (Banks et al., 2005). Because chitosan is produced indirectly via chitin deacetylation, Banks and colleagues suggest that Chs3p is complexed with a deacetylase and is responsible for making the chitin that eventually becomes cell wall chitosan. The cellular functions of the other cryptococcal chitin synthases are currently not known, although they might be elucidated in the future with the construction of double mutants.

Efforts to target chitin synthesis therapeutically have resulted in the discovery of two classes of compounds, the nikkomycins and polyoxins. These drugs are postulated to bind to the active site of chitin synthases, although the different synthases within S. cerevisiae are variably susceptible to inhibition by these drugs in vitro (Ruiz-Herrera & San-Blas, 2003). As C. neoformans is sensitive to at least one of these compounds (Nikkomycin Z) (Li & Rinaldi, 1999; Kraus et al., 2003), it would suggest that elucidation of the structure of the active site and cellular function of each chitin synthase could lead to future drug design against those enzymes that are the most vital for its survival.

Glycosyltransferases involved in cryptococcal capsule polysaccharide synthesis

The unique polysaccharide capsule of C. neoformans is an important virulence factor for this opportunist pathogen as strains lacking the capsule are avirulent or highly attenuated in virulence (Bose et al., 2003). This suggests that capsule synthesis could be targeted therapeutically. The capsule is composed of two primary polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), along with mannoproteins. GXM is a polymer of α(1,3)-linked mannan decorated with glucuronic acid, xylose and acetyl residues (Fig. 1) that makes up ~90% of the capsular mass. The arrangement of the xylose and acetyl residues in GXM differs among the four serotypes (A, D, B and C) of C. neoformans (Cherniak et al., 1998). GalXM has an α(1,6)-galactan core with β(1,3)-galactose side chains that are further substituted with mannose and xylose (Vaishnav et al., 1998) (Fig. 1). The structures of GXM and GalXM suggest that numerous glycosyltransferases are involved in their synthesis. However, no glycosyltransferase of demonstrated biochemical function has been proven to play a role in capsule polysaccharide construction to date. Kwon-Chung and colleagues have identified four ‘CAP’ genes (CAP10, 59, 60 and 64) that, when deleted, lead to viable C. neoformans strains that lack capsule and are avirulent in mice. However, the specific role of their protein products in capsule synthesis remains unclear (Chang & Kwon-Chung, 1994, 1998, 1999; Chang et al., 1996; Bose et al., 2003). Our laboratory has purified two glycosyltransferases, one mannosyltransferase and one xylosyltransferase, with activities appropriate for capsule synthesis and homologies to the CAP genes. These two enzymes are discussed briefly here.

Mannosyltransferase (Cmt1p)

An α(1,3)-mannosyltransferase that catalyses the transfer of mannose from GDP-mannose to an α(1,3)-linked mannose disaccharide was purified in our laboratory from C. neoformans membranes, and the corresponding gene was identified (Sommer et al., 2003). This gene, CMT1, encodes a 46 kDa protein and is a homolog of the CAP59 gene mentioned above. In addition, the enzyme copurified with Cas31p, a CAP64 homolog that has been shown by Moyrand et al. (2004) to have a potential role in capsule acetylation and/or xylosylation. No alteration in capsule structure was detected by electron microscopy in a cmt1 deletion strain (Sommer et al., 2003), but structural analyses of the capsular polysaccharides in this mutant are still underway.

Xylosyltransferase (Cxt1p)

Our laboratory has purified and characterized a 90 kDa cryptococcal membrane protein that catalyses the transfer of xylose from UDP-xylose to an α(1,3)-linked mannose disaccharide. Nuclear magnetic resonance analysis of the resulting trisaccharide product revealed that xylose was added in a β(1,2)-linkage to the reducing mannose (Klutts et al., 2005). Thus, this activity is appropriate for xylose transfer into either GXM or GalXM (see Fig. 1). The corresponding gene, CXT1 (cryptococcal xylosyltransferase 1), has been disrupted in C. neoformans. Interestingly, we can detect two additional xylosyltransferase activities in the cxt1Δ strain. We are now investigating the enzymes that catalyse these two additional activities.
Glycosyltransferases involved in protein glycosylation

There are two major types of glycosyl modifications of proteins, N-linked and O-linked. N-linked glycans are attached to specific asparagine residues within a protein sequence and O-linked glycans to either serine or threonine residues. The mechanisms and glycosyltransferases involved in the synthesis of these glycans in *S. cerevisiae* are well characterized, but there has been little study of these processes in *C. neoformans*. Protein glycosyltransferases are reviewed here, with special attention to what is known in *C. neoformans*.

N-linked glycan synthesis

Proper N-glycosylation of proteins may be essential for their function and, in some cases, is needed for cell survival. This pathway begins with the synthesis of a dolichol-linked oligosaccharide precursor (Dol-PPGlcNAc₂Man₉Glc₃) (Fig. 3a). This precursor is synthesized in the ER membrane by the sequential addition of monosaccharides to dolichol pyrophosphate through the function of the ALG family of glycosyltransferases (Burda & Aebi, 1999). The first of these is Alg7p, which catalyses the transfer of GlcNAc from UDP-GlcNAc to dolichol pyrophosphate on the cytoplasmic leaflet of the ER membrane. After the addition of a second GlcNAc by an unknown transferase, five mannose residues are transferred from GDP-mannose to the growing glycan by Alg1p, Alg2p, Alg11p and an unknown mannosyltransferase. The dolichol-linked oligosaccharide is then ‘flipped’ to the luminal side of the ER membrane, where Alg3p, Alg9p and Alg12p sequentially add three more mannose residues from dolichol-P-mannose to the chain. In most eukaryotes, three glucose residues are then added from dolichol-P-glucose by Alg6p, Alg8p and Alg10p (Fig. 3a). However, similar to some trypanosomatids, *C. neoformans* lacks the Alg glucosyltransferases and thus its precursor contains no glucose (Fig. 3b; Samuelson *et al.*, 2005). In most eukaryotes, these glucose residues play an essential role for glycoprotein folding quality control. Therefore, *C. neoformans* may utilize a different strategy for this process.

In all eukaryotes, once the synthesis of the oligosaccharide chain is completed, the ER oligosaccharyl transferase (OST) complex transfers it from dolichol to an asparagine residue within a consensus sequence (NXS or NXT) of a nascent peptide. After this transfer, glycosidases remove one mannose residue and the three glucose residues of the oligosaccharide chain, and the protein is transported to the Golgi apparatus where the oligosaccharide chain may be further modified. These later Golgi modification steps of N-glycosylation differ considerably among various organisms, such that an assortment of side chains can be added through different linkages. In *Saccharomyces*, Golgi N-glycan modifications begin with the addition of a single α(1,6)-linked mannose residue by the mannosyltransferase, Och1p. The protein is then further glycosylated in one of two ways, either by the addition of several α(1,3)-linked mannose residues or by extension of the α(1,6)-mannosylation to yield a product known as mannan (Dean, 1999). Commonly found in the outer layer of fungal cell walls, mannans are not essential for *in vitro* viability, but do influence various characteristics such as cell surface hydrophobicity (Singleton *et al.*, 2005) and flocculation (Stratford, 1992). Generally, mannans have a long α(1,6)-mannose backbone with numerous mannose side chains in various linkages (Ballou *et al.*, 1994; Cutler, 2001; Munro, 2001). In *Sch. pombe*, the mannose side chains are substituted with galactose residues, thus rendering it ‘galactomannan’ (Ballou & Ballou, 1995). In *S. cerevisiae*, elongation of the α(1,6)-mannan backbone is mediated by mannan polymerase complex (M-Pol) I and II (Munro, 2001). *Cryptococcus neoformans* lacks most of the genes encoding M-Pol I and II subunits, suggesting a possible absence of α-1,6 mannan (see Table 2).

One of the better-studied N-glycosylated proteins from *C. neoformans* is a phospholipase B1 (PLB1) that is localized to the cell wall (Wright *et al.*, 2004). This protein has 17 sites with the consensus N-glycosylation signal; the prediction program NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/) suggests that four of these are utilized. The apparent molecular mass of glycosylated PLB1 in a serotype B strain was determined by size exclusion chromatography and differed from that observed in a serotype A strain (Wright *et al.*, 2004). This suggests possible differences in protein glycosylation between those two serotypes, although
alterations in glycosylation sites or multimerization of PLB1 may also explain this result. Assessing potential serotype-specific changes in glycosylation will require detailed analysis of glycan structures. Such analysis will also be useful for predicting what glycosyltransferases are involved in cryptococcal N-glycosylation. Finally, it could shed light on the intriguing possibility that aspects of synthetic machinery may be shared between capsule synthesis and protein glycosylation.

O-linked glycan synthesis

In fungi, O-linked glycosylation is initiated by the transfer of a mannose residue from dolichol-P-mannose to a serine or threonine residue of a nascent peptide. This O-mannosylation reaction occurs in the lumen of the ER, catalysed by one of the protein mannosyltransferases (Pmts) (Strahl-Bolsinger et al., 1999). Fungal Pmt family members have been categorized into three subfamilies (Pmt1, Pmt2 and Pmt4) based on sequence homology (Willer et al., 2002). *Saccharomyces cerevisiae* has seven Pmt enzymes that fall into these three subgroups, whereas *Ca. albicans* has five (Cutler, 2001) (Table 2). Like *Sch. pombe* and some filamentous fungi (Prill et al., 2005), *C. neoformans* appears to have only three *PMT* genes as identified by sequence homology (Table 2). In the Golgi, a second mannose residue is transferred from GDP-mannose in an α(1,2)-linkage by the Mnt1 family of mannosyltransferases. Although there are three redundant enzymes present to catalyse this reaction in *S. cerevisiae*, *C. neoformans* appears to have only one Mnt1 homolog (Table 2). After this step, the mannose chains can be extended in the Golgi by a variety of glycosyltransferases (Gemmill & Trimble, 1999a). In most fungi, this extension involves the addition of further mannose residues. However, in *Sch. pombe* the addition of galactose residues has also been demonstrated (Gemmill & Trimble, 1999b).

Cryptococcal mannoproteins are cell wall-associated proteins that have been studied as immunodominant antigens for the cell-mediated immune response against this opportunistic pathogen. It is predicted that *C. neoformans* has more than 50 mannoproteins, only two of which, MP98 and MP88 (Levitz et al., 2001; Huang et al., 2002), have been characterized in detail. Cryptococcal mannoproteins typically contain one or more putative N-glycosylation sites and a serine/threonine-rich region that is predicted to be heavily O-glycosylated. It appears that it is the O-glycans of the cryptococcal mannoproteins that are recognized by the macrophage mannose receptor (Mansour et al., 2002). This recognition of mannoproteins is inhibited by α-D-mannopyranose but not by α-D-galactopyranose (Mansour et al., 2002), suggesting that these glycans end in mannose.

Glycosyltransferases involved in lipid glycosylation

Glycolipids are formed by specific glycosyltransferases. These enzymes are discussed below, grouped by each modified lipid.

Sphingolipid glycosyltransferases

Most of the knowledge on sphingolipid biosynthesis in fungi has been gathered from studies in *S. cerevisiae*. Sphingolipid biosynthesis is initiated by the condensation of serine and a fatty acyl-CoA (usually palmitoyl-CoA) to form 3-ketodihydro sphingosine. Through reduction and acylation reactions, this product is converted to ceramide, which can then be further modified to produce complex sphingolipids.
One major modification to ceramide is the addition of inositol phosphate by inositol phosphoryl-ceramide synthase (encoded by *IPC1*), to form inositol phosphorylceramide (IPC). IPC may then be mannosylated in an \(\alpha(1,2) \) -linkage to yield mannose-IPC (MIPC) (Patton & Lester, 1991). In *S. cerevisiae*, three genes, *SUR1* (*CSG1*, *BCL21*), *CSH1* and *CSG2*, are required for the synthesis of MIPC (Beeler *et al*., 1997). *Sur1p* shows 29% and 23% similarity over a stretch of 93 amino acids to two yeast \(\alpha(1,6) \)-mannosyltransferases, Och1p and Hoc1p, respectively. Csh1p is 65% homologous to Sur1p, and a *sur1Δch1Δ* strain completely lacks MIPCs, suggesting that these two proteins are involved with MIPC formation. Csg2p complexes separately with either Sur1p or Csh1p, and is also required for MIPC synthesis (Uemura *et al*., 2003). *Cryptococcus neoformans* appears to have a single homolog to both Sur1p and Csh1p (CNH00360) and none to Csg2p.

The terminal step in *S. cerevisiae* sphingolipid synthesis is the transfer of inositol phosphate from phosphatidylinositol to MIPC to yield the major sphingolipid, mannose diinositol phosphatidylinositol (GlcCer), made by glucosylceramide synthases (GCS) that add glucose in a \(\alpha(1,1) \) -linkage to a ceramide acceptor. GCSs have been identified in *Ca. albicans* (van Meer & Holthuis, 2000), *Pichia pastoris* and *Magnaporthe grisea* (Leipelt *et al*., 2001). Like their mammalian counterparts, these proteins have a putative transmembrane domain at the N-terminus and a segment of hydrophobic amino acids at the C-terminus, suggesting that they are integral membrane proteins. *Cryptococcus neoformans* appears to have a single glucosylceramide synthase gene, *GCS1* (Rittershaus & Del Poeta, 2005). The *gcs1Δ* strain does not produce GlcCer, and is avirulent in a mouse model of infection. It is also unable to survive in conditions that mimic mammalian lungs, i.e. alkaline pH and 5% CO\(_2\) (Rittershaus & Del Poeta, 2005).

Sterol glucosyltransferase

Ergosterol is the most abundant sterol in fungi. This molecule and its biosynthetic precursors play roles in membrane integrity, endocytosis and vacuolar membrane fusion. Owing to the lack of ergosterol in mammalian cells, a number of azole derivatives that inhibit its synthesis have been used as antifungals. These drugs result in the disruption of fungal membranes, leading to cytoplasmic leakage and ultimately to growth inhibition. Although the majority of cellular ergosterol is unglycosylated, in certain fungi a subset are modified into sterol glycosides. For example, a sterol glucosyltransferase gene from *P. pastoris* (*UGT51/PAZ4*) is required for the synthesis of ergosterol glucoside. A *ugt51* deletion mutant in *P. pastoris* is deficient in this product and appears to be defective in vacuole-dependent selective degradation of peroxisomes in response to glucose or ethanol (Warnecke *et al*., 1999; Oku *et al*., 2003). In the alkane-utilizing yeast *Yarrowia lipolytica*, a mutation in *UGT51* leads to a severe deficiency in utilization of decane (C10), but not of other n-alkanes (Stasyk *et al*., 2003). Thus, the role of ergosterol glucosides appears to be diverse among fungal organisms. There is a putative sterol glucosyltransferase in *C. neoformans* (CNCO4500) with 44% identity and 61% similarity to *P. pastoris* *UGT51*, but the function of this gene has yet to be ascertained.

Glycosylphosphatidylinositol (GPI) anchor synthesis

GPI anchors are glycolipids that link polypeptides to the external leaflet of the plasma membrane. (GPIs may also occur as free glycolipids or as anchors of glycans, but these have not been reported in *C. neoformans*.) This form of membrane attachment confers special properties on these proteins, in terms of their mobility, localization to membrane microdomains and potential release into the surrounding environment. In *S. cerevisiae*, GPI-anchored polypeptides also occur as biosynthetic precursors of proteins that later become anchored to the cell wall \(\alpha(1,6) \)-glucan (see ‘\(\beta(1,6) \)-Glucan synthases’). Although these proteins are initially tethered to the plasma membrane and thus surrounded by the cell wall, their subsequent anchoring to the cell wall causes them to be displayed on the cell surface and thus potentially available to interact with the environment or other cells. *Cryptococcus neoformans* generates GPI-anchored polypeptides that are both plasma membrane anchored (T. L. Doering, unpublished data) and linked to the cell wall (Djordjevic *et al*., 2005). In *silico* analysis (De Groot *et al*., 2005) suggests the genome encodes around 50
potentially GPI-anchored proteins (P. de Groot, F. Klis and C. Specht, pers. commun.). One of these proteins is homologous to the A. fumigatus Gel1p and the S. cerevisiae Gas1p (see Table 3), which are glucanosyltransferases important in cell wall synthesis (see ‘β(1,3)-Glucan synthases (FKS)’). Consistent with this finding, C. neoformans expresses a GPI-anchored protein that cross-reacts with polyclonal antiserum generated against yeast Gas1p (T.L. Doering, unpublished results), although its glycosyltransferase activity has not been directly tested. Another cryptococcal enzyme that is required for cryptococcal dissemination, PLB1, has recently been suggested to be GPI-anchored to the cell wall (Djordjevic et al., 2005).

GPIs have a conserved linear core of three mannose residues and a nonacetylated glucosamine (Fig. 4). The reducing end of this core is linked to an inositol phospholipid, and the nonreducing end is linked via ethanolamine to the C-terminus of the anchored polypeptide. Saccharomyces cerevisiae typically adds additional mannose residues and two ethanolamine phosphate groups to the trimannosyl core (Fig. 4), and an acyl group to the inositol moiety. Concerted efforts in mammalian systems and S. cerevisiae have identified genes encoding many of the glycosyltransferases required for GPI anchor synthesis (for a recent example, see Kang et al., 2005). Homologs of most of these genes are found in C. neoformans (Table 3), with the interesting exception of SMP3, which adds the fourth mannose of the anchor. None of these transferase activities has been investigated in detail in Cryptococcus, although mannosylated GPI intermediates have been identified in vitro in cryptococcal membrane preparations (T.L. Doering, unpublished results). An additional feature of GPI biosynthesis revealed by cell-free studies is that Ca. neoformans is much more selective than S. cerevisiae in terms of which acyl groups it adds to the GPI anchor inositol (Franzot & Doering, 1999).

Studies of GPI-anchored proteins in fungal pathogens have primarily focused on either specific polypeptides involved in pathogenesis, including cryptococcal PLB1 (Djordjevic et al., 2005) or Ca. albicans adhesins (Frieman et al., 2002), or on enzymes needed for fungal-specific processes, such as Gel1p. However, there are important aspects of fungal GPI biosynthesis that are not shared with mammalian hosts, such as the timing of addition of the fourth mannose residue (Eisenhaber et al., 2003), the presence of ceramide in anchor lipids (Fankhauser et al., 1993; Franzot & Doering, 1999), and Fontaine et al. (2003) and the mechanisms of cell wall linkage. These deserve additional investigation.

Future research

Studies of glycosyltransferases will increase our understanding of cryptococcal biology, and may lead to productive areas for the development of antifungal agents. Multiple strategies are available for these endeavors. For enzymes that resemble known glycosyltransferases in model systems, useful direction is provided by sequence information, enabled by recent efforts at multiple centers to sequence the cryptococcal genome (Loftus et al., 2005). For example, this

Table 3. Genes encoding glycosyltransferases involved in glycosylphosphatidylinositol (GPI) biosynthesis and Gas1p

<table>
<thead>
<tr>
<th>Saccharomyces cerevisiae gene</th>
<th>NCBI reference</th>
<th>Enzymatic activity in S. cerevisiae*</th>
<th>Cryptococcus neoformans protein</th>
<th>Percentage identity†</th>
<th>Percentage similarity†</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP9</td>
<td>NP_00108080</td>
<td>Adds N-acetylgalactosamine to PI</td>
<td>CNBD40100</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>GP14</td>
<td>NP_00108257</td>
<td>Adds 1st GPI core mannose</td>
<td>CNBD40300</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>GP18</td>
<td>NP_00108594</td>
<td>Adds 2nd GPI core mannose</td>
<td>CNBD40500</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>GP10</td>
<td>NP_00108257</td>
<td>Adds 3rd GPI core mannose</td>
<td>CNBD40700</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>SMP3</td>
<td>NP_00108257</td>
<td>Adds 4th GPI core mannose</td>
<td>CNBD40900</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GAS1</td>
<td>NP_00108257</td>
<td>1,3-Glucanotransferase, putative</td>
<td>CNBD41100</td>
<td>34</td>
<td>32</td>
</tr>
</tbody>
</table>

*This table does not include the multiple proteins with accessory roles in GPI biosynthetic steps, or the enzymes that add or remove nonsugar components of the GPI structure Eisenhaber et al. (2003). Core mannose residues are numbered starting at glucosamine (see Fig. 4).

†Percentage identity and similarity of the indicated C. neoformans sequences to the S. cerevisiae genes listed.
approach was recently used to investigate protein mannosyltransferases (Olson et al., 2005). Cells disrupted in genes of interest that are identified by homology may then be examined with the multiple tools currently available for this pathogen, ranging from detailed imaging to animal studies. However, owing to the wealth of unusual linkages in structures like the cryptococcal capsule, the limited homology among glycosyltransferases, and the relative simplicity of the spectrum of glycosyltransferases identified even in the best-studied model yeast, many important enzymes may be impossible to identify by a bioinformatics approach. Furthermore, some interesting questions regarding the interpretation of sequence homology within Cryptococcus have already arisen. This is exemplified by the homology of Cap59p to the α(1,3)-mannosyltransferase, Cmt1p (Sommers et al., 2003). The CAP59 gene is essential for normal capsule synthesis (Chang & Kwon-Chung, 1994), but its function is not known. Does this homology to a known glycosyltransferase indicate that Cap59p is indeed a transferase, or does it have some other cellular function (Garci-Rivera et al., 2004), or both? Despite remaining questions and potential shortfalls, sequence analysis is likely to remain a mainstay of research for cryptococcal glycan synthesis.

Where homology studies are limited by the unique nature of C. neoformans, forward genetic approaches help to fill the gap. Techniques that are now available for these studies include insertional mutagenesis (Idnurm et al., 2004; McClelland et al., 2005) and RNAi library studies (I. Bose and T.L. Doering, unpublished data), in addition to more traditional techniques such as UV mutagenesis (Jacobson et al., 1982; Janbon et al., 2001). Studies from several groups have identified acapsular or hypocapsular mutants by colony morphology, a broad approach to identifying mutations anywhere in the biosynthetic or regulatory pathways involved in capsule synthesis. This strategy has identified proteins involved in sugar uptake and metabolism, such as UDP-glucose dehydrogenase (Griffith et al., 2004; McClelland et al., 2005), but has not yet led to demonstrated mutations in glycosyltransferase activity. A second screening approach, developed by the Janbon group, is to assess cells for capsule defects based on reduced reactivity with monoclonal anticapsular antibodies. This approach has identified mutants defective in upstream steps of capsule synthesis, such as UDP-glucuronic acid decarboxylase (Bar-Peled et al., 2001; Moyrand et al., 2002). However, as with morphology screens, mutants found in this way can have defects in many parts of the biosynthetic pathway or its regulation. To select for glycosyltransferase mutants, screening of mutagenized populations must be refined, ideally being based on assays for the activity of these enzymes. Even though this has not yet been achieved, forward genetics will continue to be an important tool for the future study of cryptococcal glycosyltransferases.

Ultimately, biochemical approaches will be needed to identify the full complement of glycosyltransferases unique to C. neoformans. Once structures of the glycoconjugates of interest are obtained, biochemical assays for predicted linkages can be developed. In the case of capsule, the structures have been defined (Fig. 1) and synthetic chemistry has advanced so as to allow for the generation of relevant substrates for such assays (Oscarson et al., 2005). In other arenas, such as glycolipids and glycoproteins, the cryptococcal glycan structures have not yet been examined in detail and are likely to differ from other fungi (Gemmill & Trimble, 1999). In any situation where an assay can be developed, it can then be used biochemically to purify the enzyme of interest, and potentially adapted for genetic approaches or to screen inhibitors. For these reasons, further efforts to determine cryptococcal glycan structures and examine their synthesis biochemically remain a priority.

Conclusions

Our current knowledge of glycosyltransferases in C. neoformans is at an early stage, but the situation is changing rapidly, with advances in studies of capsule and chitin synthesis, and hints of progress in protein glycosylation as well. Identification of unique glycosyltransferases as potential drug targets is an important goal, especially as this approach has already proven effective in pathogenic fungi. Beyond therapeutic considerations, there is a tremendous amount of basic scientific knowledge to be learned from C. neoformans. We have known for a long time that the capsule is a unique and fascinating structure, but we have only more recently encountered unexpected features of the cell wall, and almost nothing is known about glycolipids and protein glycosylation. There will certainly be more surprises to come, as this rich system continues to teach us about fungal glycoconjugates in general as well as its own unique biology.

Acknowledgements

We thank Hong Liu and Cara Griffith for their help in collating Table 3, Stu Levitz for organizing a terrific conference, and Jenny Lodge for helpful conversations. We would also like to thank Piet de Groot, Frans Klis and Charles Specht for communicating unpublished results. J.S.K. is supported by NIH F32 GM072341. Research on cryptococcal glycans in the Doering laboratory is supported by NIH R01 GM66303 and NIH R01 GM71007.

References

Gemmell TR & Trimble RB (1999a) Overview of *N*- and *O*-linked oligosaccharide structures found in various yeast species. *Biochim Biophys Acta* 1426: 227–237.

